翻訳と辞書
Words near each other
・ Gaussian quadrature
・ Gaussian quantum Monte Carlo
・ Gaussian random field
・ Gaussian rational
・ Gaussian surface
・ Gaussian units
・ Gaussian year
・ Gaussig House
・ Gaussiran Glacier
・ Gausson
・ Gausson (physics)
・ Gauss–Boaga projection
・ Gauss–Bonnet gravity
・ Gauss–Bonnet theorem
・ Gauss–Codazzi equations
Gauss–Hermite quadrature
・ Gauss–Jacobi quadrature
・ Gauss–Kronrod quadrature formula
・ Gauss–Krüger coordinate system
・ Gauss–Kuzmin distribution
・ Gauss–Kuzmin–Wirsing operator
・ Gauss–Laguerre quadrature
・ Gauss–Legendre algorithm
・ Gauss–Legendre method
・ Gauss–Lucas theorem
・ Gauss–Manin connection
・ Gauss–Markov
・ Gauss–Markov process
・ Gauss–Markov theorem
・ Gauss–Newton algorithm


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gauss–Hermite quadrature : ウィキペディア英語版
Gauss–Hermite quadrature

In numerical analysis, Gauss–Hermite quadrature is a form of Gaussian quadrature for approximating the value of integrals of the following kind:
:\int_^ e^ f(x)\,dx.
In this case
:\int_^ e^ f(x)\,dx \approx \sum_^n w_i f(x_i)
where ''n'' is the number of sample points used. The ''x''''i'' are the roots of the physicists' version of the Hermite polynomial ''H''''n''(''x'') (''i'' = 1,2,...,''n''), and the associated weights ''w''''i'' are given by
Abramowitz, M & Stegun, I A, ''Handbook of Mathematical Functions'', 10th printing with corrections (1972), Dover, ISBN 978-0-486-61272-0. Equation 25.4.46.〕
:w_i = \frac } (x_i)">)^2}.
==Example with change of variable==
Let's take a function ''h'' which variable ''y'' is Normally distributed \mathcal(\mu,\sigma^2). The expectation of ''h'' corresponds to the following integral:
E() = \int_^ \frac \right) h(y) dy
As this doesn't exactly correspond to the Hermite polynomial, we need a change of variable:
x = \frac \Leftrightarrow y = \sqrt \sigma x + \mu
Coupled with the integration by substitution, we obtain:
E() = \int_^ \frac \sigma x + \mu) dx
leading to:
E() \approx \frac^n w_i h(\sqrt \sigma x_i + \mu)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gauss–Hermite quadrature」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.